

Efficient Video Classification Using Fewer Frames

Shweta Bhardwaj Indian Institute of Technology Madras Mukundhan Srinivasan NVIDIA Bangalore Mitesh M. Khapra Indian Institute of Technology Madras

◆□ → < □ → < Ξ → < Ξ → Ξ の Q @ 1/28</p>

Amazing growth in online video content

 $^{^{1}}$ A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

Example: YouTube-8 Million¹Video Dataset - 2 TB

- Amazing growth in online video content
- Availability of large scale datasets

 $^{^1}$ A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

- Amazing growth in online video content
- \blacktriangleright Availability of large scale datasets \rightarrow Complex models

 $^{^1}$ A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

- Amazing growth in online video content
- \blacktriangleright Availability of large scale datasets \rightarrow Complex models
- More demand for high memory and computational requirements

¹A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

- Amazing growth in online video content
- \blacktriangleright Availability of large scale datasets \rightarrow Complex models
- More demand for high memory and computational requirements
- ► End goal?

¹A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

- Amazing growth in online video content
- \blacktriangleright Availability of large scale datasets \rightarrow Complex models
- More demand for high memory and computational requirements
- End goal? Need to run models on low-power devices

¹A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

 Existing models process almost all the frames in videos

◆□ ▶ < @ ▶ < \ = ▶ < \ = ▶ < \ = ♪ \$</p>

 Existing models process almost all the frames in videos

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Longer sequence

- Existing models process almost all the frames in videos
- ► Longer sequence → Slow and costly video processing

< □ > < @ > < ≧ > < ≧ > ≧ · ∽ ゑ · ∽ 3/28

- Existing models process almost all the frames in videos
- ► Longer sequence → Slow and costly video processing
- Redundancy in consecutive frames

- Existing models process almost all the frames in videos
- ► Longer sequence → Slow and costly video processing
- Redundancy in consecutive frames
- High demand for compute-efficient models

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Existing models process almost all the frames in videos
- ► Longer sequence → Slow and costly video processing
- Redundancy in consecutive frames
- High demand for compute-efficient models
- Any scope to reduce extra computations ? Yes

Directions of work ?

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ のQで 4/28

4/28

Directions of work :
1. Use a fraction of frames only

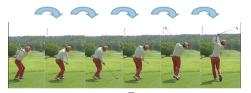
・ロト ・日本・・田本・ 日本・ シック

4/28

- Directions of work :
 - 1. Use a fraction of frames only
 - 2. Reduce memory requirement

◆□> <畳> < Ξ> < Ξ> Ξ のへで

- Directions of work :
 - 1. Use a fraction of frames only
 - 2. Reduce memory requirement
- We focus on complementary approach of frame reduction



- Directions of work :
 - 1. Use a fraction of frames only
 - 2. Reduce memory requirement
- We focus on complementary approach of frame reduction
- Necessary to balance the trade-off b/w performance on *classification* and efficiency

Dataset : Multi-Label Video Classification

YouTube-8M dataset¹

- 7 million videos
- 450,000 hours
- 230s avg. video length
- 4,716 classes
- 23 max. labels in a video
- ▶ 3.4 avg. labels/video
- 3.2B visual features

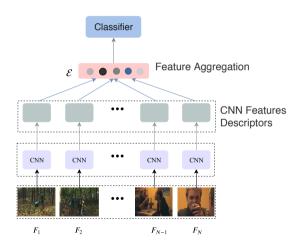
Visual features are extracted from ResNet-50²

¹A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

²Deep Residual Learning for Image Recognition

Video Processing Pipeline

CNN feature extraction of video frames

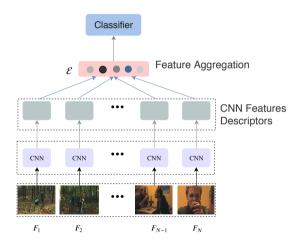


Extract features from each raw frame

< □ ▶ < @ ▶ < \ > ▶ < \ > > \ = の < @ 6/28

Video Processing Pipeline

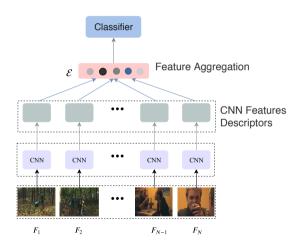
CNN feature extraction of video frames



- ▶ Extract features from each raw frame
- Features are aggregated using different methods (Recurrent or Non-Recurrent)

Video Processing Pipeline

CNN feature extraction of video frames



- Extract features from each raw frame
- Features are aggregated using different methods (Recurrent or Non-Recurrent)
- Single video encoding vector *E* is fed to 'Classifier' module

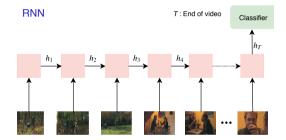
- Recurrent Network Based Models
- Cluster And Aggregate Based Models
- 3D Convolutional Based Models very computationally expensive!!

Recurrent Network Based Models

- Cluster And Aggregate Based Models
- ▶ 3D Convolutional Based Models

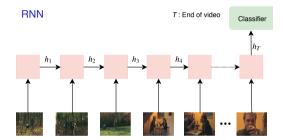
Recurrent Neural Network (RNN)

 Process video in a sequential way (frame-by-frame)



Recurrent Neural Network (RNN)

- Process video in a sequential way (frame-by-frame)
- At each step, maintain long-term history h of frames seen so far



<□ > < @ > < E > < E > E の Q @ 7/28

Recurrent Neural Network (RNN)

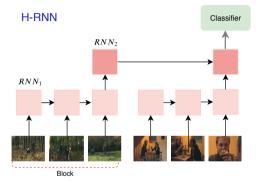
- Process video in a sequential way (frame-by-frame)
- At each step, maintain long-term history h of frames seen so far
- Consider Hierarchical Recurrent Neural Network (H-RNN^a) which:



¹A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

Recurrent Neural Network (RNN)

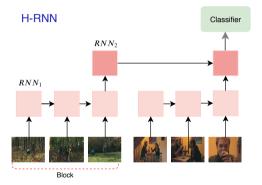
- Process video in a sequential way (frame-by-frame)
- At each step, maintain long-term history h of frames seen so far
- Consider Hierarchical Recurrent Neural Network (H-RNN^a) which:
 - treats video as a sequence of blocks
 - memorize longer context



¹A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

Recurrent Neural Network (RNN)

- Process video in a sequential way (frame-by-frame)
- At each step, maintain long-term history h of frames seen so far
- Consider Hierarchical Recurrent Neural Network (H-RNN^a) which:
 - treats video as a sequence of blocks
 - memorize longer context



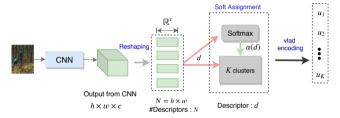
Note: Number of FLOPs \propto length of frames processed

¹A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

↓ □ ▶ ↓ ● ▶ ↓ ■ ▶ ↓ ■ ♪ ● ♡ へ ○ 8/28

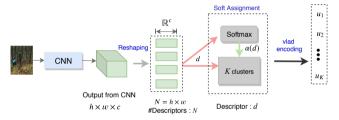
- Recurrent Network Based Models
- Cluster And Aggregate Based Models
- ▶ 3D Convolutional Based Models

Cluster And Aggregate Models NetVLAD Scheme:



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

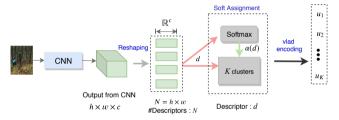
Cluster And Aggregate Models NetVLAD Scheme:



 Reshape CNN representation of a frame to obtain a descriptor d

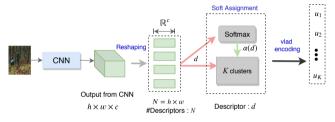
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cluster And Aggregate Models NetVLAD Scheme:



- Reshape CNN representation of a frame to obtain a descriptor d
- Soft-assignment of each cluster to the descriptor

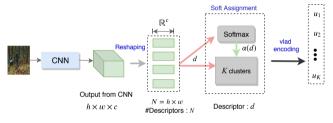
Cluster And Aggregate Models NetVLAD Scheme:



- Reshape CNN representation of a frame to obtain a descriptor d
- Soft-assignment of each cluster to the descriptor
- ¹A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

► Stack $NetVLAD^1$ encodings u_k of each cluster to obtain output vector $v \in \mathbb{R}^{cK}$

Cluster And Aggregate Models NetVLAD Scheme:



- Reshape CNN representation of a frame to obtain a descriptor d
- Soft-assignment of each cluster to the descriptor
- Stack $NetVLAD^1$ encodings u_k of each cluster to obtain output vector $v \in \mathbb{R}^{cK}$
- Combine output vectors v from all frames to get a video representation

¹A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

Cluster And Aggregate Models

Single video representation from NetVLAD is fed to classifier

 $^{^1}$ A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

- Single video representation from NetVLAD is fed to classifier
- ▶ NeXtVLAD¹: A memory-efficient version of NetVLAD

¹A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

- Single video representation from NetVLAD is fed to classifier
- ▶ NeXtVLAD¹: A memory-efficient version of NetVLAD

¹A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

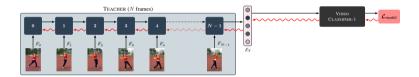
- Single video representation from NetVLAD is fed to classifier
- ▶ NeXtVLAD¹: A memory-efficient version of NetVLAD
- However!

 $^{^1\}mathsf{A}$ large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

- Single video representation from NetVLAD is fed to classifier
- ▶ NeXtVLAD¹: A memory-efficient version of NetVLAD
- ► However! both of these models still look at every frame in the video ∴ #FLOPs ≈ large, even with small memory footprint

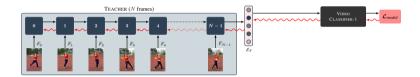
¹A large-scale video classification benchmark, Abu-El-Haija et. al, arXiv

▶ See-it-all *teacher* processes all the *N* frames in a video

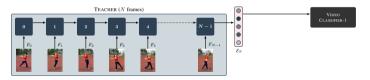


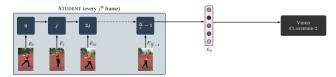
→ backprop through TEACHER

- ▶ See-it-all *teacher* processes all the *N* frames in a video
- \blacktriangleright Trained using a standard multi-label classification loss \mathcal{L}_{CE}

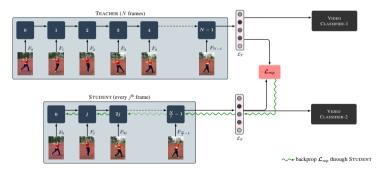


See-very-little student looks only at a fraction of frames *i.e.*, uniformly spaced k frames

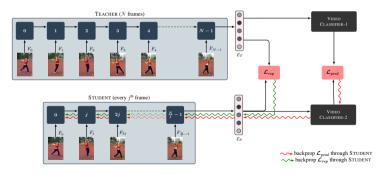




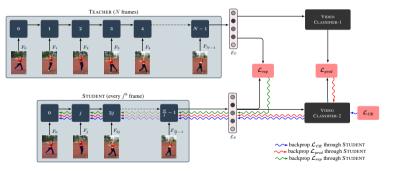
• Train student to minimize difference between the video representations of *teacher* \mathcal{E}_T and *student* \mathcal{E}_S using $\mathcal{L}_{rep} = ||\mathcal{E}_T - \mathcal{E}_S||^2$



▶ Train *student* to minimize the difference between the class probabilities predicted by the teacher \mathcal{P}_T and the student \mathcal{P}_S using $KL(\mathcal{P}_T, \mathcal{P}_S)$



 \bullet Keep an eye on final performance with classification loss $\mathcal{L}_{\textit{CE}}$



Results: Experiments on H-RNN

Hierarchical Recurrent Neural Network H-RNN¹ Skyline Model with GAP:0.811, mAP: 0.414

Model	k=	=6	k=	=10	k=	=15	k=	=20	k=	=30
	GAP	mAP	GAP	mAP	GAP	mAP	GAP	mAP	GAP	mAP
Model with k frames	Baselir	Baseline Methods								
Uniform- <i>k</i>	0.715	0.266	0.759	0.324	0.777	0.350	0.785	0.363	0.795	0.378
Random- <i>k</i>	0.679	0.246	0.681	0.254	0.717	0.268	0.763	0.329	0.774	0.339
<i>First</i> -k	0.478	0.133	0.539	0.163	0.595	0.199	0.632	0.223	0.676	0.258
<i>Middle</i> -k	0.577	0.178	0.600	0.198	0.620	0.214	0.638	0.229	0.665	0.25
Last-k	0.255	0.062	0.267	0.067	0.282	0.077	0.294	0.083	0.317	0.094
<i>First - Middle - Last-</i> k	0.640	0.215	0.671	0.242	0.680	0.249	0.698	0.268	0.721	0.287

Results: Experiments on H-RNN

Hierarchical Recurrent Neural Network H-RNN¹ Skyline Model with GAP:0.811, mAP: 0.414

l l	Model	k	=6	k=	=10	k=	=15	k=	=20	k=	=30
		GAP	mAP	GAP	mAP	GAP	mAP	GAP	mAP	GAP	mAP
Model wit	h k frames	Baselir	ne Metho	ods							
Uniform- <i>k</i>		0.715	0.266	0.759	0.324	0.777	0.350	0.785	0.363	0.795	0.378
Random- <i>k</i>		0.679	0.246	0.681	0.254	0.717	0.268	0.763	0.329	0.774	0.339
First-k		0.478	0.133	0.539	0.163	0.595	0.199	0.632	0.223	0.676	0.258
<i>Middle</i> -k		0.577	0.178	0.600	0.198	0.620	0.214	0.638	0.229	0.665	0.25
Last-k		0.255	0.062	0.267	0.067	0.282	0.077	0.294	0.083	0.317	0.094
First – Mie	<i>ddle – Last –</i> k	0.640	0.215	0.671	0.242	0.680	0.249	0.698	0.268	0.721	0.287
Training	Student-Loss	Teache	er-Studer	nt Metho	ods						
Serial	\mathcal{L}_{rep}	0.727	0.288	0.768	0.339	0.786	0.365	0.795	0.381	0.802	0.394
Serial	\mathcal{L}_{pred}	0.722	0.287	0.766	0.341	0.784	0.367	0.793	0.383	0.798	0.390
Serial	$\mathcal{L}_{rep}, \mathcal{L}_{CE}$	0.728	0.291	0.769	0.341	0.786	0.368	0.794	0.383	0.803	0.399
Serial	$\mathcal{L}_{pred}, \mathcal{L}_{CE}$	0.724	0.289	0.763	0.341	0.785	0.369	0.795	0.386	0.799	0.391
Serial	$\mathcal{L}_{rep}, \mathcal{L}_{pred}, \mathcal{L}_{CE}$	0.731	0.297	0.771	0.349	0.789	0.375	0.798	0.390	0.806	0.405

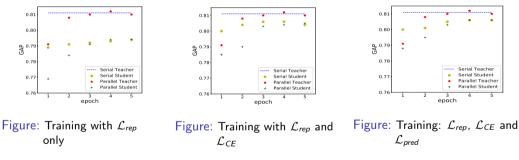
[1] Hihi et. al., Hierarchical Recurrent Neural Networks for Long-Term Dependencies

Results: Experiments on H-RNN

Hierarchical Recurrent Neural Network H-RNN¹ Skyline Model with GAP:0.811, mAP: 0.414

N	Model	k=	=6	k=	=10	k=	=15	k=	=20	k=	=30
		GAP	mAP	GAP	mAP	GAP	mAP	GAP	mAP	GAP	mAP
Model wit	h k frames	Baselir	ne Metho	ods							
Uniform- <i>k</i>		0.715	0.266	0.759	0.324	0.777	0.350	0.785	0.363	0.795	0.378
Random- <i>k</i>		0.679	0.246	0.681	0.254	0.717	0.268	0.763	0.329	0.774	0.339
First-k		0.478	0.133	0.539	0.163	0.595	0.199	0.632	0.223	0.676	0.258
<i>Middle</i> -k		0.577	0.178	0.600	0.198	0.620	0.214	0.638	0.229	0.665	0.25
Last-k		0.255	0.062	0.267	0.067	0.282	0.077	0.294	0.083	0.317	0.094
First – Mid	<i>ddle – Last –</i> k	0.640	0.215	0.671	0.242	0.680	0.249	0.698	0.268	0.721	0.287
Training	Student-Loss	Teache	er-Studer	nt Metho	ods						
Serial	\mathcal{L}_{rep}	0.727	0.288	0.768	0.339	0.786	0.365	0.795	0.381	0.802	0.394
Serial	\mathcal{L}_{pred}	0.722	0.287	0.766	0.341	0.784	0.367	0.793	0.383	0.798	0.390
Serial	$\mathcal{L}_{rep}, \mathcal{L}_{CE}$	0.728	0.291	0.769	0.341	0.786	0.368	0.794	0.383	0.803	0.399
Serial	$\mathcal{L}_{pred}, \mathcal{L}_{CE}$	0.724	0.289	0.763	0.341	0.785	0.369	0.795	0.386	0.799	0.391
Serial	$\mathcal{L}_{rep}, \mathcal{L}_{pred}, \mathcal{L}_{CE}$	0.731	0.297	0.771	0.349	0.789	0.375	0.798	0.390	0.806	0.405
Parallel	\mathcal{L}_{rep}	0.724	0.280	0.762	0.331	0.785	0.365	0.794	0.380	0.803	0.392
Parallel	$\mathcal{L}_{rep}, \mathcal{L}_{CE}$	0.726	0.285	0.766	0.334	0.785	0.362	0.795	0.381	0.804	0.396
Parallel	$\mathcal{L}_{rep}, \mathcal{L}_{pred}, \mathcal{L}_{CE}$	0.729	0.292	0.770	0.337	0.789	0.371	0.796	0.388	0.806	0.404

Results: Serial v/s Parallel



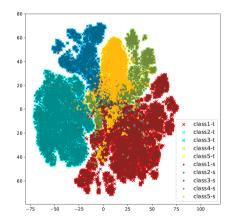
Performance comparison (GAP score) of different variants of Serial and Parallel

methods in Teacher Student training

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 17/28

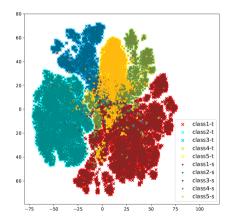
Results: Analysis

 \bullet TSNE-Plot of student \mathcal{E}_S and teacher \mathcal{E}_T encodings for top-5 most uncorrelated classes



Results: Analysis

• TSNE-Plot of student \mathcal{E}_{S} and teacher \mathcal{E}_{T} • Computation Cost v/s Frames encodings for top-5 most uncorrelated classes



Model	Time (hrs.)	FLOPS (Billion)
Teacher-Skyline	13.00	5.058
k = 30	9.11	0.520
k = 20	8.20	0.268
k = 10	7.61	0.167

Inference: 89% FLOPs reduction with only 0.5-0.9% drop in performance

1

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 · 의 Q @ 19/28

NetVLAD¹

Model: NetVLAD	k=	=10	k=	=30
	mAP	GAP	mAP	GAP
Skyline			0.462	0.823
Uniform	0.364	0.773	0.421	0.803
Student	0.383	0.784	0.436	0.812

¹Learnable pooling with Context Gating for video classification

NetVLAD¹

NeXtVLAD²: compact version of NetVLAD

Model: NetVLAD	k=10		k=	=30
	mAP	GAP	mAP	GAP
Skyline			0.462	0.823
Uniform	0.364	0.773	0.421	0.803
Student	0.383	0.784	0.436	0.812

Model: NeXtVLAD	k =	=30	FLOPs
	k= mAP	GAP	(in Billion)
Skyline	0.464	0.831	1.337
Uniform	0.424	0.812	0.134
Student	0.439	0.818	0.134

1 2

¹Learnable pooling with Context Gating for video classification

► Leverage knowledge distillation for efficient video classification with:

- Leverage **knowledge distillation** for **efficient** video classification with:
 - recurrent models (HRNN)

- Leverage **knowledge distillation** for **efficient** video classification with:
 - recurrent models (HRNN)
 - cluster-and-aggregate models (NetVLAD)

- Leverage knowledge distillation for efficient video classification with:
 - recurrent models (HRNN)
 - cluster-and-aggregate models (NetVLAD)
- Complementary approach to memory-efficient clustering models (NeXtVLAD)

- Leverage **knowledge distillation** for **efficient** video classification with:
 - recurrent models (HRNN)
 - cluster-and-aggregate models (NetVLAD)
- Complementary approach to memory-efficient clustering models (NeXtVLAD)
- \blacktriangleright Reduce FLOPs by $\sim 90\%$, which are \propto number of processed frames

- Leverage **knowledge distillation** for **efficient** video classification with:
 - recurrent models (HRNN)
 - cluster-and-aggregate models (NetVLAD)
- **Complementary** approach to **memory-efficient** clustering models (*NeXtVLAD*)
- \blacktriangleright Reduce FLOPs by $\sim 90\%$, which are \propto number of processed frames
- Manages to use $\frac{1}{10}$ of frames with **0.5-0.9%** i.e., minimal drop in performance

Dynamic Selection of Frames

Question:

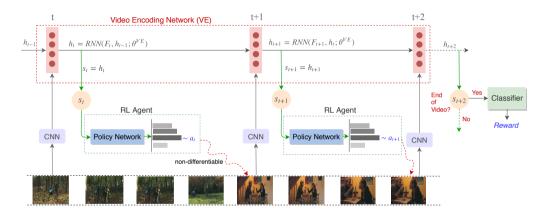
<□▶ < □▶ < □▶ < ■▶ < ■▶ < ■▶ = のQで 21/28

Question: "Does there exist a computationally efficient way in which we can dynamically select the frames through a video, which are different from uniformly sampled frames, and as a result of which, only relevant frames are presented to the classification network?"

Question: "Does there exist a computationally efficient way in which we can dynamically select the frames through a video, which are different from uniformly sampled frames, and as a result of which, only relevant frames are presented to the classification network?"

Yes ! SkipFrame comes to rescue

SkipFrame Architecture



Experiments: Rewards

Model	Reward-Design	Actions	GAP	mAP
Skyline	-	-	0.812	0.414
Uniform-10	-	-	0.759	0.324
Random-10	-	-	0.675	0.251
First-10	-	-	0.539	0.163
Middle-10	-	-	0.600	0.198
Last-10	-	-	0.267	0.067
	Delay-Reward	5-25	0.755	0.322
SkipFrame	IMM-REWARD	5-25	0.738	0.286
Chin France	Delay-Reward	alt-5-25	0.742	0.291
SkipFrame	IMM-REWARD	alt-5-25	0.739	0.288
SkipFrame	DELAY-REWARD: GAP	5-25	0.764	0.341

Table: Performance comparison of different variants of the *SkipFrame* models and the baselines. For all the variants of *SkipFrame*, we fix a budget of k=10 frames.

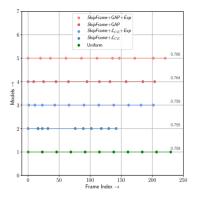


Figure: Comparison of frame-indices picked by different models.

Note: GAP score performance of each model is shown at the end of its series in the graph. The average number of frames in a video is 230. Exploration helps to better span a video

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q ○ 24/28

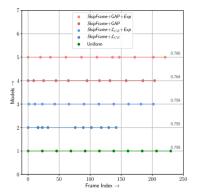


Figure: Comparison of frame-indices picked by different models.

Note: GAP score performance of each model is shown at the end of its series in the graph. The average number of frames in a video is 230.

Exploration helps to better span a video

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q ○ 24/28

GAP is a better reward signal

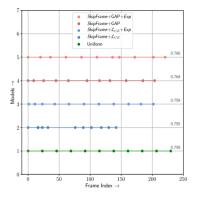


Figure: Comparison of frame-indices picked by different models.

Note: GAP score performance of each model is shown at the end of its series in the graph. The average number of frames in a video is 230.

- Exploration helps to better span a video
- GAP is a better reward signal
- Still, frames lie in close neighborhood of uniformally spaces

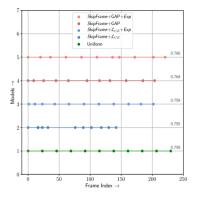


Figure: Comparison of frame-indices picked by different models.

Note: GAP score performance of each model is shown at the end of its series in the graph. The average number of frames in a video is 230.

- Exploration helps to better span a video
- GAP is a better reward signal
- Still, frames lie in close neighborhood of uniformally spaces
- ► GAP + Exp beats Uniform by slight margin of 0.6%

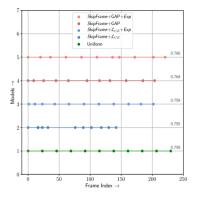


Figure: Comparison of frame-indices picked by different models.

Note: GAP score performance of each model is shown at the end of its series in the graph. The average number of frames in a video is 230.

- Exploration helps to better span a video
- GAP is a better reward signal
- Still, frames lie in close neighborhood of uniformally spaces
- ► GAP + Exp beats Uniform by slight margin of 0.6%
- How exactly are labels spanned in a video?

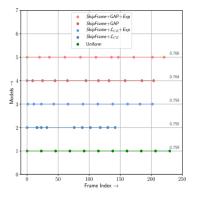


Figure: Comparison of frame-indices picked by different models.

Note: GAP score performance of each model is shown at the end of its series in the graph. The average number of frames in a video is 230.

Label Distribution ?

Figure: Sketch of a sample video with labels: *Travel*, *Nature*, *Train*

Experiments: Computation Cost

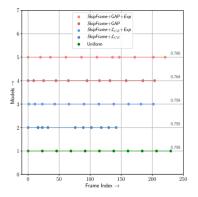


Figure: Comparison of frame-indices picked by different models.

Note: GAP score performance of each model is shown at the end of its series in the graph. The average number of frames in a video is 230.

Model	#Frames	#FLOPs		
Skyline	230	5.058 B		
Uniform	10	0.167 B		
SkipFrame	10	0.167 B		
		+ 81.92 K		

Table: Comparison of FLOPs of different models. Here, B: Billion and K: Thousand are the order of #FLOPs

- Propose a method to reduce the computation time for video classification using the idea of distillation.
- ▶ Introduce a *student* network which only processes *k* frames of the video
- Train the *student* by matching:
 - 1. final representation produced by the *student* and the *teacher*
 - 2. output probability distributions produced by the student and teacher
- Student outperforms the baseline by a significant margin
- Reduce the computation time by 30% while giving an approximately similar performance as the teacher network
- ► Further analysis on *dynamic* selection of frames, unlike *uniform sampling*
- Establish picking *uniformly spaced* frames as easier and efficient strategy than *dynamic* selection

Any questions?

